Keyword

EARTH SCIENCE > BIOSPHERE > ECOLOGICAL DYNAMICS > SPECIES/POPULATION INTERACTIONS > SPECIES PREDATION

24 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 24
  • These spreadsheets provide the proportions of prey DNA sequences in the scats of Adelie penguins at Bechervaise Island and Whitney Point in East Antarctica. Samples were collected during two stages of the breeding season: mid brood guard (Bechervaise Island-January 4-6th 2013, Whitney Point 23- 28th December 2012) and mid creche (23-26th January 2013). Scat samples were collected from breeding birds, chicks and non-breeders at Bechervaise Island and breeding birds and chicks at Whitney Point. 'Breeders' were identified as individuals brooding or provisioning a chick, whereas 'non-breeders' were usually pairs that had reoccupied the colony and were building new practice nests with no chick present. Non-breeders in the colony include immature birds that have not yet bred and mature birds of breeding age that did not breed in a particular season (e.g. no partner or insufficient body condition) DNA from each sample was extracted and sequenced as per the protocols in the following paper: Jarman, S.N., McInnes, J.C., Faux, C., Polanowski, A.M., Marthick, J., Deagle, B.E., Southwell, C. and Emmerson, L. 2013 Adelie penguin population diet monitoring by analysis of food DNA in scats. PLoS One 8, e82227. (doi:10.1371/journal.pone.0082227). The Raw Data spreadsheet contains the proportion of each prey group of each individual sample, plus the total sequence count of prey items. Only samples with greater than 100 prey sequences are included in the dataset. The summary datasheet contains only prey taxa which contained greater than 2% of the proportion of sequences. Analysis of these data have been published in: McInnes JC, Emmerson L, Southwell C, Faux C, Jarman SN. (2016) Simultaneous DNA-based diet analysis of breeding, non-breeding and chick Adelie Penguins http://dx.doi.org/10.1098/rsos.150443

  • GPS tag deployments on Snow petrels (Pagodroma nivea) in 2011 from Bechervaise Island, Mawson Coast and Filla Island, Rauer Group, as part of AAS project 2722. Identifying potential threats from a changing environment on snow petrel populations requires understanding key ecological processes and their driving factors. This project focuses on determining driving factors for the species' at-sea distribution and foraging habitat. The data will be linked to spatio-temporally coincident data of biological and physical characteristics of the ecosystem to develop explanatory models and, where possible, predictive models to explore the outcomes of plausible scenarios of future environmental change on snow petrel populations. Tags were deployed on Snow Petrels in the Mawson and Davis areas for tracking purposes. The types of tags used were BAS (British Antarctic Survey) geolocators (Mk18) The GLS data are in hexadecimal format, and will need appropriate software to interpret them.

  • The foraging ecology of three fulmarine petrels including Cape petrels, Southern fulmars and Antarctic petrels were investigated at Hop Island during the 2015/16 austral summer. Two datasets were generated: 1) tracking data from Fulmarine petrels, and 2) stable isotope analysis of blood, feathers and egg shells. Tracking data were collected using Ecotone GPS trackers attached to the birds back feathers with tape. Location data has been interpolated using great circle distance to a time step of 15 minutes and include a record of whether the bird dived during that time period or not. Each location point was assigned a breeding stage (incubation or chick rearing) based on individual nest activities. Stable isotope ratios of carbon (13C/12C) and nitrogen (15N/14N) were determined by analysing 1 mg aliquots through continuous flow - elemental analysis - isotope ratio mass spectrometry (CF-EA-IRMS). Isotopic values of blood reflect approximately the last 52 days before sampling and thus the incubation period of all three species. Egg membranes and feathers remain metabolically inert after formation, and hence reflect the trophic niche during the pre-laying and moult period, respectively. We collected moult feathers during the chick-rearing period and therefore assumed that these were formed one year prior to the collection date and thus represent the trophic niche of the chick-rearing period one year earlier (austral summer 2014-15).

  • Metadata record for data from ASAC Project 2722 See the link below for public details on this project. Public The Convention for the Conservation of Antarctic Marine Living Resources (CCAMLR) aims to manage the harvesting of living resources in the Southern Ocean in a manner that is sustainable to the harvested species, dependent species and ecosystem processes. The krill fishery is one of the major fisheries in the Southern Ocean. Application of CCAMLR's policy in management of the krill fishery requires sound scientific information on both krill and krill-dependent (predator) species. This program aims to provide the scientific information on krill predators required by CCAMLR for sustainable management of the krill fishery through research, survey and monitoring activities. Taken from the 2009-2010 Progress Report: Project objectives: The Convention for the Conservation of Antarctic Marine Living Resources (CCAMLR) aims to manage the harvesting of living resources in the Southern Ocean in a manner that is sustainable to the harvested species, dependent species and ecosystem processes. The krill fishery is one of the major fisheries in the Southern Ocean. Application of CCAMLR's policy to management of the krill fishery requires sound scientific information on both krill and krill-dependent (predator) species. This program of work aims broadly to provide the scientific information on krill predators required by CCAMLR for sustainable management of the krill fishery in the Australian Antarctic Territory against a background of other impacts such as climate change, and compliments separate SOE projects aimed at krill itself. This program is related to the previous multi-year project number 2205 (Adelie penguin research and monitoring in support of the CCAMLR Ecosystem Monitoring Project (CEMP)) but recognises and addresses recent developments in CCAMLR that include (i) the current development of a krill management procedure, (ii) a review of outputs from past CEMP work and recognition of the likely need to re-design CEMP to meet the needs of the new krill management procedure, and (iii) the need to estimate predator consumption of krill as part of the krill management procedure. Although the previous project 2205 focussed on Adelie penguins in the Mawson region exclusively, this new program will include consideration of additional species and regions to allow improvements in both ecosystem monitoring and estimation of krill consumption. The program was approved in 2005 as a multi-year ASAC project with four major sub-programs or projects which have strong methodological and practical cross-linkages and overlap. The projects and their objectives are: (1) Development of cost-effective methods for surveying and monitoring predator populations at the large spatial scales required by CCAMLR, (2) Estimation of the abundance of krill predators in CCAMLR Statistical Areas 58.4.1 and 58.4.2 (which together span the width of the Australian Antarctic Territory), (3) Assessment of spatio-temporal variability in predator performance parameters to enable the design of an effective and efficient monitoring program, and to examine metapopulation dynamics (4) Continuation of selected aspects of project 2205 to (i) improve estimates and understanding of temporal variability and population dynamics and (ii) continue the application of CEMP. We propose to continue these projects in 2008/09 and commence some additional projects. Projects (1) and (2) will be expanded beyond Adelie penguins to include some species of flying seabirds. Additional work related to the AAD's management of the Rookery Islands Specially Protected Area is proposed which would be undertaken in collaboration with the AADs environmental policy section, and aims to assess the status of the Southern Giant Petrel. It would be undertaken in conjunction with planned surveys of Adelie penguins and some flying seabird species in the Rookery Islands (project 2). Details of the work will be outlined in a separate proposal submitted by the AAD environmental policy section. A additional project is related to an IPY approved project focussing on Adelie penguins as indicators in the Southern Ocean. The objective of this new project is to co-ordinate some aspects of the work of Adelie penguin researchers around Antarctica to improve understanding of broad-scale processes in the Southern Ocean. A planning meeting in May 2007 had to be postponed until September 2007 and consequently it is not yet possible to outline the details of this project. We will provide project details as soon as possible after the September 2007 meeting and request that a late submission be accepted for this project. Progress against objectives: (1) Implementation and further development of cost-effective methods for surveying and monitoring predator populations at the large spatial scales required by CCAMLR. Camera technology has been developed and is now being used to monitor Adelie penguin populations on several islands in the Mawson and Davis areas. Methods for cost-effective development of regional population size have also been developed and applied in the Mawson and Davis areas. Flying seabirds have been incorporated in the monitoring program by developing and implementing monitoring methods of snow petrel on Bechervaise Island. (2) Estimation of the abundance of krill predators in CCAMLR Statistical Areas 58.4.1 and 58.4.2 (which together span the width of the Australian Antarctic Territory). Aerial surveys were undertaken of Adelie penguin populations in the Vestfold Hills and Rauers Islands. Reconnaissance surveys of Adelie penguin distribution were conducted by the CASA aircraft between Casey and Mirny. Ground surveys of Adelie penguin populations were undertaken in the Mawson region (3) Assessment of spatio-temporal variability in predator performance parameters to enable the design of an effective and efficient monitoring program, and to examine metapopulation dynamics. Population surveys and the use of cameras at multiple sites in the Mawson area are providing data on Adelie penguin meta-population dynamics. (4) Continuation of selected aspects of project 2205 to (i) improve estimates and understanding of temporal variability and population dynamics and (ii) continue the application of CEMP. Measurement of Adelie penguin population size, foraging trip duration, breeding success and survival at Bechervaise Island continued in 2009/10 (5) Assessment of the winter foraging distribution of Adelie penguins. Satellite trackers were successfully deployed on 15 fledgling Adelie penguins.

  • From the abstract of the referenced paper: Satellite telemetry data are a key source of animal distribution information for marine ecosystem management and conservation activities. We used two decades of telemetry data from the East Antarctic sector of the Southern Ocean. Habitat utilization models for the spring/summer period were developed for six highly abundant, wide-ranging meso- and top-predator species: Adelie, Pygoscelis adeliae and emperor, Aptenodytes forsteri penguins, light-mantled albatross, Phoebetria palpebrata, Antarctic fur seals, Arctocephalus gazella, southern elephant seals, Mirounga leonina, and Weddell seals, Leptonychotes weddellii. The regional predictions from these models were combined to identify areas utilized by multiple species, and therefore likely to be of particular ecological significance. These areas were distributed across the longitudinal breadth of the East Antarctic sector, and were characterized by proximity to breeding colonies, both on the Antarctic continent and on subantarctic islands to the north, and by sea-ice dynamics, particularly locations of winter polynyas. These areas of important habitat were also congruent with many of the areas reported to be showing the strongest regional trends in sea ice seasonality. The results emphasize the importance of on-shore and sea-ice processes to Antarctic marine ecosystems. Our study provides ocean-basin-scale predictions of predator habitat utilization, an assessment of contemporary habitat use against which future changes can be assessed, and is of direct relevance to current conservation planning and spatial management efforts. The data files provided here comprise the model predictions of the preferred habitat for each of the six species listed above, as well as the overlap results obtained by combining these six sets of results. See the paper for methods used to generate the model predictions and to combine the individual species results. File names for individual species are of the form results_SPP_TYPE.asc, where SPP is one of "afs" (Antarctic fur seal), "ap" (Adelie penguin), "ep" (emperor penguin), "lma" (light-mantled albatross), "ses" (southern elephant seal), or "ws" (Weddell seal. TYPE is either "mean" (mean estimate of habitat preference) or "iqr" (inter-quartile range of uncertainty in the estimate; see paper for details). Data values for individual species results are percentiles of the study area, so that values of 90% or higher are pixels corresponding to the most important 10% of habitat for that species, values of 80% or greater are the top 20% of habitat, and so on. The overlap results files are named overlay_results_mean.asc and overlay_results_iqr.asc. Values in these files represent the average of the top four individual species results in a given pixel (see paper for details).

  • Scans from one or more field books from observations made at Macquarie Island between 1962 and 1968. The observations were of Royal Penguins, and also of Skua predation and band resights. The following names have been mentioned in the scans: Susan Ingham John Warham John Ling David Nicolls I.T. Simpson Duncan Mackenzie Peter Shaughnessy D. Edwards R.Carrick Merilees Kerry Peter Ormay Schmidt Major S. Harris

  • This study was carried out by Giulia Roncon as part of her PhD at IMAS. The study employed both archival and contemporary diving data, collected by six species of marine predators (three penguins and three seal species) from the Eastern Antarctic sector of the Southern Ocean, to clarify key questions, such as (i) are there differences and/or commonalities regarding the diving physiology and ecology of marine predators, and (ii) what are the main determinants and constrains that characterise the underwater behaviour of air-breathing vertebrates. This dataset is a compilation of data of several different studies carried out by different research teams in various locations and at various times. All TDRs were archival loggers that had to be retrieved to obtain the data. Thus, the animals had to be captured twice (deployment and retrieval). Details about the types of tags are listed in the dataset. Species used in the study were: Adelie Penguins Emperor Penguins King Penguins Fur Seals Southern Elephant Seals Weddell Seals

  • Metadata record for data from ASAC Project 2695 See the link below for public details on this project. Variations in the winter extent of sea ice are thought to have profound effects on biological productivity, such as algal growth and the reproduction of Antarctic krill, with subsequent flow-on effects through the food web. This pilot study aims to measure the winter foraging patterns of Weddell seals (Leptonychotes weddellii) as a first step in investigating their role in the winter sea-ice zone. Our specific objectives are to: 1. Obtain satellite tracks from a sample of adult female Weddell seals 2. Collect diving behaviour (dive depth, duration and frequency) from a sub-set of these seals 3. Collect high precision water temperature data from a subset of these seals These data will enable us to assess the feasibility of including Weddell seals as a candidate species in a long-term study of winter sea-ice and predator performance. This project has now been merged into project number 2794 (ASAC_2794). It also contains data collected as part of project 1171 (ASAC_1171). The download file contains 13 Access Databases containing data from this project. An excel spreadsheet summarising the databases is also included. The data have also been loaded into the Australian Antarctic Data Centre's ARGOS tracking database. The database can be accessed at the provided URL.

  • Metadata record for data expected from ASAC project 131 (ASAC_131). Taken from the referenced publication: The diet of Heard Island cormorants was investigated by examination of casts over three summer seasons. The diet was composed of mainly benthic organisms, with polychaetes being the most common prey for the greater part of the population. Fish were taken commonly only by the small breeding population at the western end of the island, whereas elsewhere only 22% of casts contained any fish remains at all. The diet is therefore different from that reported for Phalacrocorax atriceps at other localities.

  • Metadata record for data from ASAC Project 419 See the link below for public details on this project. From the abstracts of some of the referenced papers: The population size and breeding success of Emperor Penguins (Aptenodytes forsteri) at the Auster and Taylor Glacier colonies were estimated during the 1988 breeding season. At Auster a total of 10963 pairs produced about 6350 fledglings for a breeding success of 58%. At Taylor Glacier about 2900 pairs raised 1774 fledglings for a breeding success of 61%. Fledglings left Taylor Glacier over a period of 33 days at a mean mass of 10.56kg. The accuracy of the tritiated water (HTO) and sodium-22 (22Na) turnover methods as estimators of dietary water and sodium intake was evaluated in emperor penguins fed separate diets of squid and fish. Emperor penguins assimilated 76.2% and 81.8% of available energy in the squid and fish diets, respectively. Both isotopes had equilibrated with body water and exchangeable sodium pools by 2h after intramuscular injection. The tritium method yielded reliable results after blood isotope levels had declined by 35%. On average the tritium method underestimated water intake by 2.9%, with a range of -10.3% to +11.1%. The 22Na method underestimated Na intake on average by 15.9% with the errors among individuals ranging from -37.2% to -1.8%. Discrepancies with 22Na turnover were significantly greater with the squid diet than the fish diet. The results confirm the reliability of the tritium method as an estimator of food consumption by free-living emperor penguins (provided seawater and freshwater ingestion is known) and support the adoption of the 22Na method to derive an approximation of seawater of seawater intake by tritiated emperor penguin chicks and by tritiated adults on foraging trips of short duration. The diet composition of Emperor Penguin Aptenodytes forsteri chicks was examined at Auster and Taylor Glacier colonies, near Australia's Mawson station, Antarctica, between hatching in mid-winter and fledging in mid-summer by 'water-offloading' adults. Chicks at both colonies were fed a similar suite of prey species. Crustaceans occurred in 82% of stomach samples at Auster and 87% of stomachs at Taylor Glacier and were heavily digested; their contribution to food mass could not be quantified. Fish, primarily bentho-pelagic species, accounted for 52% by number and 55% by mass of chick diet at Auster, and squid formed the remainder. At Taylor Glacier the corresponding values were 27% by number and 31% by mass of fish and 73% by number and 69% by mass of squid. of the 33 species or taxa identified, the fish Trematous eulepidotus and the squid Psychroteuthis glacialis and Alluroteuthis antarcticus accounted for 64% and 74% of the diets by mass at Auster and Taylor Glacier, res pectively. The sizes of fish varied temporally but not in a linear manner from winter to summer. Adult penguins captured fish ranging in length from 60 mm (Pleuragramma antarcticum) to 250 mm (T. eulepidotus) and squid (P. glacialis) from 19 to 280 mm in mantle length. The length-frequency distribution of P. glacialis showed seasonal variation, with the size of squid increasing from winter to summer. The energy density of chick diet mix increased significantly prior to 'fledging'.